전체검색

사이트 내 전체검색

Comparative Performance of Machine Learning Ensemble Algorithms For Forecasting Cryptocurrency Prices > 자유게시판

CS Center

TEL. 010-7271-0246


am 9:00 ~ pm 6:00

토,일,공휴일은 휴무입니다.

050.4499.6228
admin@naturemune.com

자유게시판

Comparative Performance of Machine Learning Ensemble Algorithms For Fo…

페이지 정보

profile_image
작성자 Eugenia Bunton
댓글 0건 조회 38회 작성일 25-01-21 06:53

본문

Coinmarketcap, article, more, read here Crypto-Currency Market Capitalizations. https://coinmarketcap.com/ currencies. Accessed: 15 May 2020.

Krugman P., Bits and Barbarism. http://www.nytimes.com/2013/12/23/opinion/krugmanbits-and-barbarism.html. Accessed: 15 May 2020.

CNBC, Top Economists Stiglitz, Roubini and Rogoff Renew Bitcoin Doom Scenarios. https://www.cnbc.com/2018/07/09/nobel-prize-successful-economist-joseph-stiglitz-criticizes-bitcoin.html. Accessed: 15 May 2020.

Selmi, R., Tiwari, A., Hammoudeh, S., "Efficiency or hypothesis? A dynamic evaluation of the Bitcoin market", Economic Bulletin, Vol. 38, No. 4, (2018), 2037-2046. https://econpapers.repec.org/RePEc:ebl:ecbull:eb-18-00395. Accessed: 15 May 2020.

Cheah, E., Fry, J.,"Speculative bubbles in Bitcoin markets? An empirical investigation into the basic value of bitcoin", Economic Letters, Vol., No. 130, (2015), 32-36. doi: 10.1016/j.econlet.2015.02.029

Ciaian, P., Rajcaniova, M., and Kancs, A., "The economics of BitCoin worth formation", Applied Economics, Vol. 48, No. 19, (2016), 1799-1815. doi: 10.1080/00036846.2015.1109038

Catania L., Grassi, S., "Modelling Crypto-Currencies Financial Time-Series", CEIS Research Paper, Vol. 15, No. 8, (2017), 1-39. https://ideas.repec.org/p/rtv/ceisrp/417.html. Accessed: 15 May 2020.

Soloviev, V., Belinskij, A., "Complex Systems Theory and Crashes of Cryptocurrency Market", Communications in Computer and knowledge Science, Vol. 1007, (2019) 276-297. https://hyperlink.springer.com/chapter/10.1007/978-3-030-13929-2_14.

Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of knowledge. Cambridge University Press. Cambridge, UK, (2012).

Sheikhi, S., Kheirabadi, M. T., Bazzazi, A. "An Effective Model for SMS spam Detection utilizing Content-based mostly features and Averaged Neural network", International Journal of Engineeringو Transactions B: Applications, Vol. 33, No. 2, (2020), 221-228. doi: 10.5829/IJE.2020.33.02B.06

Kumar, S., Sahoo, G. A., "Random Forest Classifier primarily based on Genetic Algorithm for Cardiovascular Diseases Diagnosis", International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 11, (2017), 1723-1729. doi: 10.5829/ije.2017.30.11b.13

Patil, S., Phalle, V., "Fault Detection of Anti-friction Bearing utilizing Ensemble Machine Learning Methods", International Journal of Engineering, Transactions B: Applications, Vol. 31, No. 11, (2018), 1972-1981. doi: 10.5829/ije.2018.31.11b.22

Makridakis, S., Spiliotis, E., Assimakopoulos, V., "Statistical and Machine Learning forecasting methods", Plos one, March 27, (2018), 1-26. doi: 10.1371/journal.pone.0194889

Bontempi, G., Taieb, S., Borgne, Y., "Machine Learning Strategies for Time Series Forecasting", European Business Intelligence Summer School eBISS 2012, 62-77. Springer-Verlag. Berlin Heidelberg, (2013). doi: 10.1007/978-3-642-36318-4_three

Persio, L., Honchar, O., "Multitask machine studying for monetary forecasting", International Journal of Circuits Systems and Signal Processing, Vol. 12, (2018), 444-451.

Kourentzes, N., Barrow, D.K., Crone, S,F., "Neural community ensemble operators for time series forecasting", Expert Systems with Applications, Vol. 41, No. 9, (2014), 4235-4244. doi:10.1016/j.eswa.2013.12.011

Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE., "A survey of deep neural community architectures and their applications" Neurocomputing, Vol. 234 (C), (2017), 11-26. doi:10.1016/j. neucom.2016.12.038.

McNally, S., Roche, J., Caton, S. "Predicting the price of bitcoin utilizing machine learning", in: 2018 twenty sixth Euromicro Int. Conf. Parallel, Distrib. Network-Based Process., IEEE, (2018), 339-343. doi: 10.1109/PDP2018.2018.00060

Hamid SA, Habib A., "Financial Forecasting with Neural Networks", Academy of Accounting and Financial Studies Journal,. Vol. 18, No. 4, (2014), 37-55. https://www.abacademies.org/articles/aafsjvol1842014.pdf. Accessed: 15 May 2020.

Boyacioglu, M., Baykan, O.K., "Predicting direction of stock value index motion utilizing artificial neural networks and assist vector machines: The pattern of the Istanbul Stock Exchange", Expert Systems with Applications, Vol. 38, No. 5, (2011), 5311-5319. doi: 10.1016/j.eswa.2010.10.027

Varghade, P., Patel, R, "Comparison of SVR and Decision Trees for Financial Series Prediction", International Journal on Advanced Computer Theory and Engineering, Vol. 1, No. 1, (2012), 101-105.

Kumar, M., "Forecasting Stock Index Movement: A Comparison of Support Vector Machines and Random Forest", SSRN Working Paper, (2006). doi: 10.2139/ssrn.876544

Peng, Y., Henrique, P., Albuquerque, M., "The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and conventional currencies with Support Vector Regression", Expert Systems with Applications, Vol. 97, (2018), 177-192. doi: 10.1016/j.eswa.2017.12.004

Ahmed NK, Atiya AF, Gayar NE, El-Shishiny H., "An Empirical Comparison of Machine Learning Models for Time Series Forecasting", Econometric Reviews, Vol. 29, No. 5-6, (2010), 594-621. doi:10.1080/ 07474938.2010.481556

Akyildirim, E., Goncuy, A., Sensoy, A., Prediction of Cryptocurrency Returns using Machine Learning, (2018). https://arxiv.org/pdf/1805.08550.pdf. Accessed 15 May 2020.

Amjad, M., Shah, D., "Trading Bitcoin and Online Time Series Prediction", NIPS 2016: Time Series Workshop., (2016). http://proceedings.mlr.press/v55/amjad16.pdf (2016). Accessed 15 May 2020.

Hitam, N. A., Ismail, A. R., "Comparative Performance of Machine Learning Algorithms for Cryptocurrency Forecasting", (2018). https://www.researchgate.web/ publication/327415267. Accessed 15 May 2020.

Mallqui, D., Fernandes, R. "Predicting the route, maximum, minimal and closing prices of day by day Bitcoin change price utilizing machine studying techniques", Applied Soft Computing Journal, Vol. 75, (2019), 596-606. doi: 10.1016/j.asoc.2018.11.03

Sezer, O.B., Mehmet Ugur Gudelek, M.U., Ozbayoglu, A.M. "Financial Time Series Forecasting with Deep Learning : A systematic literature review: 2005-2019", Applied Soft Computing Journal, Vol. 90, (2020), 106-181. doi: 10.1016/j.asoc.2020.106181

Kumar, D., Rath, S.K. "Predicting the Trends of Price for Ethereum Using Deep Learning Techniques", in: Artificial Intelligence and Evolutionary Computations in Engineering Systems, Springer, 2020, 103-114. doi: 10.1007/978-981-15-0199-9_9

Yao, Y., Yi, J., and Zhai, S., "Predictive Analysis of Cryptocurrency Price Using Deep Learnin", International Journal of Engineering & Technology, Vol. 7, No. 3, 27, (2018), 258-264. doi: 10.14419/ijet.v7i3.27.17889

Chen, W., Xu, H., Jia, L., Gao, Y. "Machine studying model for Bitcoin trade charge prediction using financial and technology determinants", International Journal of Forecasting, (2020), (article in press). doi: 10.1016/j.ijforecast.2020.02.008

Saxena, A., Sukumar, T., "Predicting bitcoin price using LSTM and evaluate its predictability with ARIMA model", International Journal of Pure and Applied Mathematics, Vol. 119, No.17, (2018), 2591-2600. https://acadpubl.eu/hub/2018-119-17/3/214.pdf. Accessed: 15 May 2020.

Breiman, L., Friedman, H., Olshen, R. A., & Stone, C. J., Classification and Regression Trees. Belmont, NJ. Wadsworth International Group, (1984).

Breiman, L., "Random Forests", Machine Learning,Vol. 45, (2001), 5-32. doi: 10.1023/A:1010933404324

Friedman, Jerome H., "Greedy Function Approximation. A Gradient Boosting Machine", Annals of Statistics, Vol. 29, No. 5, (2001), 1189-232. doi: 10.2307/2699986

Friedman, Jerome H., "Stochastic Gradient Boosting", Computational Statistics and Data Analysis, Vol. 38, No. 4, (1999), 367-378. doi: 10.1016/S0167-9473(01)00065-2

Borges, T.A., Neves, R.N. "Ensemble of Machine Learning Algorithms for Cryptocurrency Investment with Different Data Resampling Methods", Applied Soft Computing Journal , Vol. 90, (2020), 106-187. doi: 10.1016/j.asoc.2020.106187

Chen, Z., Li, C., Sun, W. Bitcoin Price Prediction Using Machine Learning: An Approach to Sample Dimension Engineering, Journal of Computational and Applied Mathematics, Vol. 365, (2020), 112395. doi: 10.1016/j.cam.2019.112395

Sun, X., Liu, M., Sima, Z. "A novel cryptocurrency worth development forecasting model based mostly on LightGBM", Finance Research Letters, Vol. 32, (2020), 101084. doi: doi.org/10.1016/j.frl.2018.12.032

Yahoo Finance. https://finance.yahoo.com. Accessed: 15 May 2020.

Guryanova, L., Yatsenko, R., Dubrovina, N., Babenko, V. "Machine Learning Methods and Models, Predictive Analytics and Applications". Machine Learning Methods and Models, Predictive Analytics and Applications 2020: Proceedings of the Workshop on the XII International Scientific Practical Conference Modern problems of social and financial techniques modelling (MPSESM-W 2020), Kharkiv, Ukraine, June 25, 2020, Vol-2649, (2020), 1-5.

댓글목록

등록된 댓글이 없습니다.